If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2-82x+24=0
a = 17; b = -82; c = +24;
Δ = b2-4ac
Δ = -822-4·17·24
Δ = 5092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5092}=\sqrt{4*1273}=\sqrt{4}*\sqrt{1273}=2\sqrt{1273}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-82)-2\sqrt{1273}}{2*17}=\frac{82-2\sqrt{1273}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-82)+2\sqrt{1273}}{2*17}=\frac{82+2\sqrt{1273}}{34} $
| 3x+12=48+2x | | 40x=10-x/20 | | (1/64)x=256 | | 2/3h=18 | | Y-0=-3x-(-12) | | 2x^2+4x-757=0 | | x+3+4x=-12 | | 6b+1=31 | | -4n+6=2n-4 | | 5x+14+66=14x+8 | | 0.571428571(2.62500x+0.5)=-2(0.142857143-0.178571429)x | | 3/5(5x+20)-2x=3x-4 | | -4(-x-1)=32 | | 3t^2+16t+20=0 | | P-x=35558 | | 12t^2+52t-9=0 | | 3/2y=42 | | 5x+14=4x+26 | | 7x^2+2x+3=-1 | | 2e-10=3 | | x^2+(x+2)^2=761 | | (4/5)=(x+2/45) | | 4d+15=8=5d | | 8.7=-4.9t^2+27.5t+8.7 | | 67+35+x=180 | | -2(3x+2)=-24 | | 8.7=-4.9t^+27.5t+8.7 | | 75+12x+9x=180 | | 8.7=4.9t^+27.5t+8.7 | | 5x-2x(x-5)=-7+5x+1 | | x(32-x)=252 | | -3v-7/2=7/5v-7/5 |